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Hausdorff Nonstandard Extensions ∗

Marco Forti, Mauro Di Nasso and Vieri Benci

abstract: We introduce the notion of Hausdorff extension of an arbitrary set X
and we study the connections with the Stone-Čech compactification βX of the dis-
crete space X. We characterize those Hausdorff extensions that satisfy the “transfer
principle” of nonstandard analysis, and we investigate the consistency strength of
their existence.
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Introduction

Nonstandard analysis is often presented as a part of logic. This habit is, in our
opinion, a mere historical accident. In fact, several different approches are possible.
E.g., it is shown in [3] that every nonstandard model can be presented by means of
a simple purely algebric construction. Other presentations using nonstandard set-
theories have been started in [11] and [13]. Interesting and elementary approaches
are also those of [12] and [2].

In this paper we exploit a topological approach to nonstandard models. In par-
ticular we construe the set of the hypernatural numbers as a topological extension
of N, where the “∗” operator on subsets of N is nothing but the closure operator.

Let us define

• a Hausdorff space (∗N, τ) is a topological model of the hypernatural numbers
if the following conditions are satisfied

(i) N is a dense discrete subspace of ∗N;

(ii) every function f : N → N has a (unique) continuous extension ∗f : ∗N →
∗N;

(iii) ∀x ∈ N . f (x) 6= g (x) =⇒ ∀ξ ∈ ∗N . ∗f (ξ) 6= ∗g (ξ);

(iv) ∀ξ, η ∈ ∗N ∃f, g ∈ NN ∃α ∈ ∗N . ξ = ∗f(α), η = ∗g(α).

∗ Work partially supported by Fondi di Ateneo 2002 grants of the Università di Pisa, Italy.
2000 Mathematics Subject Classification 54D35; 03H05; 03C20; 54D80.
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In this paper we prove that a topological model of the hypernatural numbers
is actually a nonstandard model of the natural numbers. In fact, it is possible
to define a bounded elementary embeddding ∗ : V∞ (N) → V∞ (∗N) between the
corresponding superstructures (see section 4.4 of [7] for the notation). In general,
we refer to [10] for all the topological notions and facts used in this paper, and to
[7] for definitions and facts concerning ultrapowers and ultrafilters.

Topological nonstandard extensions are studied in full generality in [9]. In
this paper we restrict ourselves to analyse the case of Hausdorff spaces. This
choice reduces dramatically the number of possibilities, and in fact it presents
several interesting foundational questions and aspects. Namely, it turns out that
the existence of a Hausdorff model of the hypernatural numbers is equivalent to
the existence of an ultrafilter satisfying a property, labelled (C) in [8], which has
been rarely considered in the literature. As far as we know, it is an open question
whether the existence of ultrafilters of type (C) is provable in ZFC alone, while it
follows easily from the Continuoum Hypothesis (see section 3 below).

On the other hand, all Haudorff topological models of the hypernatural numbers
present some nice features. First of all they can be identified with suitable subspaces
of the Stone-Čech compactification βN of N. Thus any hypernatural number can
be identified with an ultrafilter over N. Moreover, once this identification is done,
the function ∗f becomes the usual extension f of f to ultrafilters, namely ∗f(α) =
f (α) =

{
f−1 (A) : A ∈ α

}
.

Of particular interest is the case of topological models containing hypernatural
numbers corresponding to selective ultrafilters. Given a Hausdorff extension ∗N of
N containing such an α, let us consider the subset N :=

{∗f (α) : f ∈ NN}
. Then

N has the following remarkable properties:

• N is a nonstandard submodel of ∗N, and it is minimal in the sense that no
proper subset of N is a proper elementary extension of N;

• for every pair β, γ ∈ N there exists f ∈ NN such that β = ∗f (γ), hence N is
simple, i.e. it has no proper topological submodels;

• N = {∗g(α) | g : N → N strictly increasing};

• N is a set of numerosities in the sense of [1];1

• the set of hyperreal numbers R obtained from N satisfies the Strong Cauchy
Principle of [2], i.e. every positive infinitesimal ε ∈ R is equal to ∗f (α) for
suitable strictly decreasing function f : N → R.

1 We can give a semplified notion of numerosity as a surjective map num : S → N , where
S = P(

⋃
n∈N Nn), such that:

1. num (A) = |A| if A is finite;
2. num (A ∪B) = num (A) + num (B) if A and B are disjoint;
3. num (A×B) = num (A) · num (B) ;
4. num(A) < num(B) ⇐⇒ num(A) = num(A′) for some A′ $ B.
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The paper is organized as follows. In Section 1, we introduce the notion of
Hausdorff extension of an arbitrary set X and we study its connections with the
Stone-Čech compactification of the discrete space X. In Section 2, we consider
elementary (nonstandard) Hausdorff extensions and we give suitable topological
and algebraic characterizations. In Section 3 we deal with the consistency problem
for Hausdorff extensions and other related questions.2

1. Hausdorff extensions

The main feature of nonstandard models of Analysis is the existence of a canon-
ical extension ∗f:∗R →∗R of any (standard) function f:R → R. The similarity with
the continuous extensions of functions in various compactifications of topological
spaces suggests the following definition of Hausdorff extension of an arbitrary set
X.

Definition 1.1 Let ∗X be a Hausdorff space, and let X be a dense subspace of
∗X. Then ∗X is a Hausdorff extension of X if every function f : X → X has a
continuous extension ∗f : ∗X → ∗X.

Notice that the continuous extension ∗f is uniquely determined, because X is
dense in ∗X, which is Hausdorff. It follows that all Hausdorff extensions satisfy
several natural “preservation properties”. In the following lemma we list some
important and natural ones, concerning compositions, restrictions, ranges, identity,
injective, surjective, and constant functions.

Lemma 1.1 The following properties hold in any Hausdorff extension ∗X of X,
for all functions f, g : X → X:

1. ∗g ◦ ∗f = ∗(g ◦ f);

2. if f is the identity, then ∗f is the identity;

3. if f(x) = g(x) for all x ∈ A, then ∗f(ξ) = ∗g(ξ) for all ξ ∈ A;

4. if f is 1-1 on A ⊆ X, then ∗f is 1-1 on A; in particular ∗f is injective if and
only if f is injective;

5. ∗f(A) = f(A) for all A ⊆ X; in particular ∗f is surjective if and only if f
is surjective;

6. finite ranges are preserved, i.e. ∗f(∗X) = f(X) whenever f(X) is finite.

Proof. Points 1, 2, and 3 are immediate, by uniqueness, and 4 follows since a
function is injective if and only if it has a left inverse.

The inclusion ∗f(A) ⊆ f(A) holds for all continuous functions. Therefore 5
follows again from 1-3, because the restriction of ∗f to A has a right inverse.

2 The authors are grateful to A. Blass for useful information.
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Finally, point 6 follows from 5, because ∗f(X) = f(X) = f(X) whenever f(X)
is finite.

2

Notice that a finite setX cannot have proper Haudorff extensions, because finite
sets are closed in Haudorff spaces. Hence we may restrict ourselves to consider only
infinite sets X. We intend to assign an extension ∗A ⊆ ∗X to each subset A ⊆ X.
This can be done in a natural way by considering the characteristic function

χA(x) =
{

1 if x ∈ A
0 otherwise

of any subset A of X. In the sequel we shall assume w.l.o.g. that 0, 1 ∈ X, so as
to extend all characteristic functions.

By point 6 of the above lemma, the extension of the characteristic function χA

is the characteristic function χ∗A of a suitable subset ∗A of ∗X, which turns out to
be the closure A of A in ∗X, by point 3 of the same lemma. Moreover the sets ∗A
are a clopen basis of a 0-dimensional4 topology.

Lemma 1.2 Let ∗X be a Hausdorff extension of X. Then

(i) if χA : X → X is the characteristic function of A ⊆ X, then the extension
∗χA = χ∗A is the characteristic function of ∗A = A, the closure of A in ∗X.

(ii) ∗A is (cl)open for all A ⊆ X, and the closure map ∗ : A 7→ ∗A = A is an
isomorphism of the complete boolean algebra P(X) onto the field S(∗X) of
all clopen subsets of ∗X, whose inverse map is C 7→ C ∩X.

(iii) For any ξ ∈ ∗X, the set Uξ = {A ⊆ X | ξ ∈ ∗A} is an ultrafilter over X,
which is mapped by ∗ onto a set of neighborhood of ξ in ∗X. In particular
S(∗X) is a clopen basis of a 0-dimensional topology not finer than that of ∗X.

Proof. We have already seen that the extensions of characteristic functions
are characteristic functions. Moreover ∗χA(A) ⊆ {1} and ∗χA(X \A) ⊆ {0}.
Therefore A = ∗A and X \A = ∗(X \A) are a clopen partition of ∗X.

The closure map commutes with complements of clopen sets and with binary
unions. Moreover different clopen subsets of ∗X cannot have the same intersection
with X, which is dense in ∗X. Therefore the statement (ii) is completely proven.

Finally, for each A ⊆ X, {A,X \A} is a partition of ∗X. Hence exactly one
of A and X \ A belongs to Uξ, which is therefore an ultrafilter. The remaining
assertions of (iii) follow from (i) and (ii).

2

When dealing with nonstandart models, the topology generated by S(∗X) is
commonly called S-topology. For sake of simplicity, we shaw directly assume in
the sequel that the topology of ∗X is the S-topology.

4 Recall that a space is 0-dimensional if the clopen sets are a basis of its topology.
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It is apparent that the Stone-Čech compactification5 βX of a discrete space
X is a Hausdorff extension of X, since every function f : X → X has a unique
continuous extension f : βX → βX.6 In fact, it is universal in the sense that any
Hausdorff extension of X is canonically homeomorphic to a suitable subspace of
βX. More precisely:

Definition 1.2 Let ∗X be a Hausdorff extension of X. A subspace Y of ∗X is
called *invariant if ∗f(η) ∈ Y for all η ∈ Y and all f : X → X.

Theorem 1 Every *invariant subspace of βX is a Hausdorff extension of X. Con-
versely, for every Hausdorff extension ∗X of X, there exists a unique continuous
map  : ∗X → βX that extends the canonical embedding e : X → βX, and  maps
homeomorphically ∗X onto a *invariant subspace of βX.

Precisely, for all ξ ∈ ∗X, (ξ) is the point of βX corresponding to the ultrafilter
Uξ. Moreover, for all f : X → X,  ◦ ∗f = f ◦ .

Finally,  is surjective if and only if ∗X is compact. Hence βX is the unique
compact Hausdorff extension of X.7

Proof. The first assertion is obviously the ground of the definition of *invariant
subspace.

Assume that  maps any point ξ ∈ ∗X to the point of βX corresponding to the
ultrafilter Uξ. Then, for all x ∈ X, Ux is the principal ultrafilter generated by x,
and  induces the canonical embedding of X into βX. If OA is a basic open set
of βX, then −1(OA) = A, hence  is continuous, and so the unique continuous
extension of e.

We have ξ ∈ A ⇔ ∗f(ξ) ∈ f(A) for all ξ ∈ ∗X, or equivalently A ∈ Uξ ⇔
f(A) ∈ U∗f(ξ). It follows that f((ξ)) = (∗f(ξ)).

The map  is injective, since ∗X is Hausdorff. Moreover Uξ corresponds to the
filter of the clopen neighborhoods of ξ, by Lemma 1.2.

Finally,  is surjective if and only if every ultrafilter over X is equal to Uξ for
suitable ξ ∈ ∗X. This fact is equivalent to compactness, because every proper filter
of closed subsets of ∗X has nonempty intersection if and only if every maximal
filter in the field S(∗X) has nonempty intersection.

2

From the above theorem we see that all Hausdorff extensions make a substan-
tial use of the same “function-extending mechanism”, namely that arising from
the Stone-Čech compactification. We conclude this section by showing that any

5 For various definitions and properties of the Stone-Čech compactification see [10]. Here we
only recall that if X is a discrete space, then βX can be identified with the set of all ultrafilters
over X, endowed with the topology having the family {OA | A ∈ P(X)} as basis, where OA is
the set of all ultrafilters containing A. The embedding e : X → βX is given by the principal
ultrafilters.

6 In terms of ultrafilters, f can be defined by putting A ∈ f(U) ⇔ f−1(A) ∈ U .
7 A detailed study of the canonical map  and its properties in the context of the S-topology

of arbitrary nonstandard models can be found in [14].
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Hausdorff extension of X is the union of smaller *invariant subspaces, that can be
naturally viewed as “quotients” of suitable ultrapowers of X.

In dealing with a ultrapower XX/U , where U is an arbitrary ultrafilter over X,
we use the following notation:

- [f ] ∈ XX/U is the equivalence class of the function f : X → X;

- g : XX/U → XX/U is the interpretation of the function g in the ultrapower, i.e.
g([f ]) = [g ◦ f ] for all f : X → X;

- AX/U ⊆ XX/U is the interpretation of A ⊆ X in the ultrapower.

The subsets AX/U , for A ⊆ X, are the basis of a 0-dimensional topology, which
we call the Star topology of the ultrapower XX/U . We have

Lemma 1.3 Let ∗X be a Hausdorff extension of X. For α ∈ ∗X put

∗Xα = {∗f(α) | f : X → X}.

Then ∗Xα is the least *invariant subspace of X containing α.
There exists a unique map ψ : XX/Uα → ∗Xα such that ∗g ◦ψ = ψ ◦ g for all

g : X → X. Moreover ψ is surjective, continuous and open w.r.t. the Star topology
of XX/Uα.

Proof. The first assertion is immediate.
Define the map π : XX → ∗Xα by π(f) = ∗f(α). By Lemma 1.1 we have

π(f) = π(g) whenever f = g on some A ⊆ X s.t. α ∈ A, i.e. on some A ∈ Uα.
Therefore π induces a map ψ : XX/Uα → ∗Xα, by putting ψ([f ]) = ∗f(α). We
have, for all f, g : X → X,

∗g(ψ([f ])) = ∗g(∗f(α)) = ∗(g ◦ f)(α) = ψ([g ◦ f ]) = ψ(g([f ])).

Hence ψ is the unique map satisfying the wanted identity.
Finally, ψ is surjective by definition of ∗Xα, and for all f ∈ XX

ψ([f ]) ∈ ∗A ⇐⇒ ∃U ∈ Uα . f(U) ⊆ A ⇐⇒ [f ] ∈ AX/Uα.

Therefore ψ maps elements of the basis of the Star topology of XX/Uα onto
elements of the clopen basis of the topology of ∗X.

2

The above lemma suggests the following

Definition 1.3 Let ∗X be a Hausdorff extension of X. Then

• ∗X is principal if there exists α ∈ ∗X such that

∗X = ∗Xα = {∗f(α) | f : X → X}.
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• ∗X is simple if it has no proper nontrivial *invariant subspaces (equivalently
∗X = ∗Xα for all α ∈ ∗X \X).

• ∗X is coherent if any two points of ∗X belong to some principal subspace ∗Xα

of ∗X. (or equivalently for all ξ, η ∈ ∗X there exist functions f, g : X → X
and α ∈ ∗X s.t. ∗f(α) = ξ and ∗g(α) = η).

Clearly every simple Hausdorff extension is principal. We can give the following
complete characterization:

Theorem 2 Let ∗X be a Hausdorff extension of X. Then the following properties
are equivalent:

(i) ∗X is simple;

(ii) ∗X is coherent and the ultrafilter Uα is selective9 for all α ∈ ∗X \X;

(iii) there exists α ∈ ∗X such that ∗X = ∗Xα and Uα is selective.

If ∗X is simple, then the canonical map ψα : XX/Uα → ∗X is bijective for any
α ∈ ∗X \X, hence it is a homeomorphism w.r.t. the Star topology. Moreover ∗X
satisfies the following property, for all f, g : X → X:

(∗) f(x) 6= g(x) for all x ∈ X =⇒ ∗f(ξ) 6= ∗g(ξ) for all ξ ∈ ∗X.

Conversely, every ultrapower of X modulo a selective ultrafilter over X, if en-
dowed with the Star topology, becomes a simple Hausdorff extension of X satisfying
the property (∗).

Proof.
(i)⇒(ii). Assume that ∗X = ∗Xξ for all ξ ∈ ∗X \X. Then for all α ∈ ∗X \X⊥ξ =
∗f(α) and α = ∗g(ξ) = ∗g(∗f(α)), for suitable f, g : X → X. Hence Uα = g ◦ f(Uα).
This implies that [g ◦ f ] is the class of the identity, and so f is equivalent to a
bijective function modulo Uα. Therefore all ultrafilters Uα are selective.
(ii)⇒(iii). It is enough to show that ∗X is principal. Let α, β ∈ ∗X \X and pick
ξ ∈ ∗X such that α = ∗f(ξ) and β = ∗g(ξ) for suitable functions f, g. Since Uξ is
selective, both f and g can be taken bijective. Then β = ∗(g ◦ f−1)(α), and so α
is a generator.
(iii)⇒(i). Assume that ∗X = ∗Xα, with Uα selective. Given ξ ∈ ∗X \ X pick
f : X → X such that ξ = ∗f(α). Then f is not equivalent to a constant, hence it
is equivalent to a bijective function g. Now ∗g(α) = ∗f(α) = ξ, and α = ∗g−1(ξ). It
follows that ∗X is simple, since ∗Xα = ∗Xξ for all ξ ∈ ∗Xα \X.

If the ultrafilter Uα is selective and ∗f(α) = ∗g(α), then f, g can be assumed
bijective. Moreover g◦f−1 is the identity modulo Uα, hence [f ] = [g]. Therefore ψα

9 Many equivalent properties can be used in defining selective ultrafilters (see, e.g. [7] or [5]).
Here we need the following: U is selective if and only if every f : X → X is either equivalent to
a constant or to a bijective function.



16 Marco Forti, Mauro Di Nasso and Vieri Benci

is injective, and actually a homeomorphism, being continuous and open. Moreover,
if ∗f(ξ) = ∗g(ξ) for ξ = ∗h(α), say, then [f ◦ h] = [g ◦ h], and so f, g agree on h(U)
for some U ∈ Uα. Therefore ∗Xα satisfies the property (∗).

The last assertion of the theorem is a straightforward consequence of the pre-
ceding arguments.

2

We shall see in the next section that the canonical map ψα is bijective if and only
if ∗Xα satisfies the property (∗). This fact is the corner stone in using Hausdorff
extensions as nonstandard models. Therefore we conclude this section by isolating
these extensions in the following

Definition 1.4 A Hausdorff extension ∗X of X is a Hausdorff *extension if, for
all f, g : X → X,

(∗) f(x) 6= g(x) for all x ∈ X =⇒ ∗f(ξ) 6= ∗g(ξ) for all ξ ∈ ∗X.

2. Hausdorff elementary extensions

The main tool of the so called nonstandard methods is the study of extensions
which preserve those properties of the standard structure which are relevant in the
given context. The Transfer (Leibniz) Principle states that all properties that are
expressible in a(n in)sufficiently expressive language are preserved by passing to
the nonstandard models.

A crucial property of any nonstandard model of Analysis is the following:

(e) ∗f(ξ) = ∗g(ξ) ⇐⇒ ∃A ⊆ X (ξ ∈ ∗A & ∀x ∈ A . f(x) = g(x)),

which expresses preservation of equalizers, i.e.

{ξ ∈ ∗X | ∗f(ξ) = ∗g(ξ)} = ∗{x ∈ X | f(x) = g(x)}.

This property has an “analytic” flavour, and in fact it is the very characteristic
feature of nonstandard extensions when compared with continuous extensions of
functions.

Since the inclusion {x ∈ X | f(x) = g(x)} ⊆ {ξ ∈ ∗X | ∗f(ξ) = ∗g(ξ)} is ob-
viously true in all Hausdorff extensions (point 3 of Lemma 1.1), any hypothesis
yielding the rightpointed arrow suffices to obtain (e).

This turns out to be the case of property (∗), which states that disjoint functions
have disjoint extensions, and thus corresponds to the particular case of empty
equalizers. To be sure, the very ground of our use of (∗) in characterizing Hausdorff
*extensions lies in the fact that this apparently weaker assumption yields indeed
the whole of (e).

Lemma 2.1 A Hausdorff extension ∗X of X satisfies the property (e) if and only
if it is a Hausdorff *extension.
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Proof Since (∗) is a particular case of (e), we have only to prove that the
former implies the inclusion

{ξ ∈ ∗X | ∗f(ξ) = ∗g(ξ)} ⊆ {x ∈ X | f(x) = g(x)}.

In fact, put A = {x ∈ X | f(x) = g(x)}, and let the functions f ′, g′ agree
with f, g outside A, and with the constants 0, 1 on A, respectively. Since f ′, g′

are disjoint on X, also ∗f ′ and ∗g′ are disjoint on ∗X, by (∗). But f, f ′ and g, g′

agree on X \ A, hence ∗f ′ = ∗f and ∗g′ = ∗g outside A, by Lemma 1.1. Therefore
{ξ ∈ ∗X | ∗f(ξ) = ∗g(ξ)} ⊆ A.

2

We are now able to characterize all Hausdorff *extensions of X:

Theorem 3 The following properties are equivalent for any principal Hausdorff
extension ∗Xα of X:

1. ∗Xα is a Hausdorff *extension of X;

2. the map ψ : XX/Uα → ∗Xα is bijective;

3. the ultrafilter Uα satisfies the property

(C) ∀f, g ∈ XX ( f(Uα) = g(Uα) ⇐⇒ ∃A ∈ Uα ∀x ∈ A f(x) = g(x) ).11

More generally, a Hausdorff extension ∗X of X is a Hausdorff *extension if and
only if all ultrafilters Uξ, for ξ ∈ ∗X, have the property (C), or equivalently if and
only if all principal subextensions ∗Xξ of ∗X are principal Hausdorff *extension.

Proof. The left member of (C) is equivalent to ∗f(α) = ∗g(α), whereas the
right member is equivalent to [f ] = [g]. Therefore each of the assertions 1-3 is
equivalent to the condition (e), which characterizes *extensions.

The same argument proves also the last part of the lemma.
2

It should be clear that the map ψ : XX/Uα → ∗Xα is an isomorphism of
first-order structures in the language having X as a set of constants and XX as
a set of function symbols. Therefore any Hausdorff *extension provides plenty of
nonstandard models in a plain, natural way. Moreover these models are strong
extensions, in the sense that they can be uniformly expanded to arbitrary first
order languages.

That also n-ary relations and functions can be naturally extended is suggested
by the following

Lemma 2.2 Let ∗X be a Hausdorff *extension of X and let ξ, η ∈ ∗X satisfy
∗fi(ξ) = ∗gi(η), for suitable functions f1, . . . , fn, g1, . . . , gn ∈ XX . Then, for all
ϕ : Xn → X,

∗(ϕ ◦ (p1, . . . , pn))(ξ) = ∗(ϕ ◦ (q1, . . . , qn))(η),

provided that there are p, q ∈ XX and α ∈ ∗X with ∗p(α) = ξ and ∗q(α) = η.

11 The property (C) has been labelled so in [8], where various connected properties of ultrafilters
are considered.
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Proof. Put pi = fi ◦ p and qi = gi ◦ q: then ∗pi(α) = ∗qi(α). Applying
(e) n times, one obtains a set A ⊆ X s.t. α ∈ A and, for all a ∈ A, p1(a) =
q1(a), . . . , pn(a) = qn(a). Hence (ϕ ◦ (p1, . . . , pn))(a) = (ϕ ◦ (q1, . . . , qn))(a), and
applying (e) again ∗(ϕ ◦ (p1, . . . , pn))(α) = ∗(ϕ ◦ (q1, . . . , qn))(α).

Now we have ∗(ϕ ◦ (f1, . . . , fn))(ξ) = ∗(ϕ ◦ (f1, . . . , fn))(∗p(α)) = ∗((ϕ ◦
(f1, . . . , fn))◦p)(α) = ∗(ϕ◦(p1, . . . , pn))(α), and similarly ∗(ϕ◦(g1, . . . , gn))(η) =
∗(ϕ ◦ (q1, . . . , qn))(α).

2

Let ∗X be a Hausdorff *extension of X. Given any first-order structure X =
〈X;R, . . .〉 with universe X, and relations R, . . ., we define a corresponding struc-
ture ∗X = 〈∗X; ∗R, . . .〉 with universe ∗X by putting

∗R = {(∗f1(α), . . . , ∗fn(α)) | α ∈ ∗X, fi ∈ XX ∗(χR ◦ (f1, . . . , fn))(α) = 1},

where χR is the characteristic function of the n-ary relation R.

The above lemma clarifies that this definition is a “good” one (at least for
coherent Hausdorff *extensions), and we can so give a complete characterization of
the Hausdorff extensions which are elementary extensions.

Theorem 4 Let ∗X be a Hausdorff extension of X, and let X be a first order struc-
ture with universe X. Then the corresponding structure ∗X is a strong elementary
extension of X if and only if ∗X is a coherent Hausdorff *extension.

In particular, if ∗X is a principal Hausdorff *extension, then the structure ∗X
is an ultrapower extension of X.

Proof. We have already seen that the property (∗) is an instance of the transfer
principle, and so it has to hold in any elementary extension. Although coherence
may appear to be a completely different kind of property, nevertheless it turns out
that a strong uniform version of coherence can be obtained by transfer as well,
namely

(p) There exist p1, p2 : X → X such that for all ξ, η ∈ ∗X there is a unique ζ ∈ ∗X
satisfying ξ = ∗p1(ζ), η = ∗p2(ζ).

In fact, since X is infinite, there is a bijective map δ : X → X ×X (encoding of
pairs). Let π1, π2 : X ×X → X be the ordinary projections, and put pi = πi ◦ ψ:
then clearly for all x, y ∈ X there is a unique z ∈ X such that x = p1(z), y =
p2(z). Thus a direct application of transfer yields (p), which holds therefore in all
elementary extensions.

It remains to prove that any coherent Hausdorff *extension ∗X becomes a strong
elementary extension through the above interpretations of the relation symbols.
Now coherence makes ∗X the directed union of its principal subspaces ∗Xα, and
Lemma 2.2 grants that every ∗Xα is expanded so as to remain isomorphic to the
corresponding ultrapowerXX/Uα. Therefore ∗X, being the directed union of strong
elementary extensions, is itself a strong elementary extension (see [7]).
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2

Differently from selectiveness, the property (C) seems prima facie rather weak,
since it is always verified whenever any of the involved functions is injective. Nev-
ertheless it turns out that even the consistency strength of the mere existence of
Hausdorff *extensions is not yet exactly measured, as we shall see in the next
section.

3. Final remarks

As shown by Theorems 2 and 3, Hausdorff extensions are strictly related to
special ultrafilters, namely those having the so-called “property (C)”, and in par-
ticular to selective ultrafilters. Unfortunately, while selectiveness has been deeply
investigated, not much is known about the properties and the foundational strength
of (C)-ultrafilters. What is known from the literature is essentially the fact that,
over a countable set, the property (C) follows from the 3-arrow property of [4],
which in turn is satisfied both by selective ultrafilters and by products of pairs of
nonisomorphic selective ultrafilters.

We itemize below a few known facts that are relevant in our context.

• There are no countably incomplete selective uniform ultrafilters over an un-
countable set X (see e.g. [7]).

• If the Continuum Hypothesis CH (or Martin Axiom MA)13 holds, then there
exist 22ℵ0 selective ultrafilters over N, and also 22ℵ0 non-selective ultrafilters
over N having the property (C)(see e.g. [7,4]).

• There are both models of ZFC with no selective ultrafilters, and models of
ZFC with exactly one selective ultrafilter (up to isomorphisms) (see [15]).

As a straight consequence of the above, we have the following facts:

1. It is consistent with ZFC that there exist both simple and non-simple Haus-
dorff *extensions.

2. It is consistent with ZFC that there exist no simple Hausdorff extensions.

3. It is consistent with ZFC that there exists a unique simple Hausdorff extension
(which is necessarily a *extension).

The latter property seems of particular interest to us, because it allows for the
existence of a “canonical” (unique minimal) nonstandard model ∗X for any given
X. However, as far as we do not abide ZFC as our foundational theory, we are not
able to prove the existence of Hausdorff *extensions. This unpleasant fact led the
authors to investigate also non-Hausdorff topological extensions: we refer to [9] for
an extensive treatment of topological extensions in a more general setting.

13 Recall that the axiom MA is independent of ZFC and strictly weaker than CH.
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